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A method of combined determination of thermophysical characteristics (TPC)  of heat-insulating materials 

that is based on solving the inverse heat-conduction problem is discussed. The influence of the parameters 

of the calculation algorithm and the uncertainty in specifying the parameters of the measuring device on the 

TPC measurement error is analyzed. It is shown that the measurement error considerably exceeds the scatter 

of the results of repeated measurements of the same sample without disassembling the measuring device. 

In mathematical modeling of thermophysical processes a lack of reliable information on the thermophysical 

characteristics (TPC) of the materials is experienced in the majority of cases. Among those materials heat insulators 

form a special group. For them, on the one hand, it is difficult to determine the TPC measurement error due to 

the absence of reference samples while, on the other hand, it is often necessary to know this error in order  that 

the calculated temperature not exceed the established limit. The majority of the handbooks on the TPC of materials 

[I-3 ] do not provide the errors in TPC determinations. In [4 ], various different reference data have been analyzed 

and the conclusion was made that  "even for relatively well-studied hard re f rac tory  metals the results of 

investigations of different authors diverge considerably: for heat capacity these deviations amount to 15%, and for 

thermal conductivity 2 0 - 3 0 % . "  Up to now the situation has remained almost unchanged. 

Employing mathematical modeling, we have analyzed the influence of the parameters of the calculation 

algorithm and the uncertainty in specifying the parameters of the measuring device on the TPC measurement error 

for heat-insulating materials. It is shown that the error exceeds considerably the scatter in the measurement results 

obtained in repeated measurements of the same sample without disassembling the measuring device. In so doing, 

the inverse heat-conduction problem (IHCP) has been solved in a formulation that makes it possible to forego the 

use of a precision source of constant specific heat flux. 

The measuring cell was a plane electric heater (with a thickness of 0.67-10 -3 m and a diameter  of 

5- 10 -2 m) that provides a one-dimensional heat flux to which cylindrical 5" 10-2-m-diameter  samples made of the 

investigated material were linked on both sides. Thermocouples were placed between the samples. The design of 

the cell was symmetric relative to the middle of the heating element, and therefore in Fig. 1 only half of it is shown. 

Thermocouples 4, 5, 6 were of informational value, and 7 served as a reference thermocouple by which it was 

determined that the thermal wave did not reach the opposite end of the sample. Fulfillment of this condition allowed 

the sample to be treated as a semiinfinite body. In the mathematical model of the measurement process it was 

assumed that a Nichrome plate is used instead of Nichrome wire. The thickness of this plate was set in such a way 

that mass and, consequently, the heat capacity of the wire and the plate were the same. 

In heating a sample by a thin plane heating element, the heat capacity of the latter is commonly neglected 

and, as a consequence, it is assumed that the entire amount of heat released by the heating element enters the 

investigated sample. In measuring the TPC of highly efficient heat insulators with 2 - 1 0  -2 W / ( m . K )  and 

C N 105 J / ( m  3. K), the heat capacity of the heating element must not be neglected since it is commensurable with 

that of the heated layer of the investigated sample. Neglect of this fact leads to a methodological error. 

Russian Federal Nuclear Center, Arzamas-16, Russia. Translated from Inzhenerno-Fizicheskii Zhurnal, 

Vol. 71, No. 1, pp. 106-111, January-February,  1998. Original article submitted April 21, 1997. 

1062-0125/98 / 7101-0101 $20.00 © 1998 Plenum Publishing Corporation 101 



1 2 5 4  5 6  8 7 
qi" i 
250 

20O I 

1501 

tO0 

5O 
. - o - -  ! 

--~-2 

I 1 J 

o 20 +b 6b eo ,oo t 
Fig. I. Schematic of the measuring cell: I) Nichrome, 2) mica (electrical 

insulator), 3) steel, 4, 5, 6, 7) thermocouples, 8) sample of the investigated 

material; Xl, x2, coordinates of placement of the thermocouples. 

Fig. 2. Time (sec) dependence of the input heat flux (W/m2): 1) numerical 

differentiation, 2) calculation by (8)-(10). 

The mathematical model of sample heating concerned a semiinfinite body at the boundary of which a 

variable heat flux was specified. In [5 ], a solution of this problem is given. After correction of a misprint made in 

[5 ] the final formula acquires the form 

1/2 
T (x, t) X = ~ f q i n ( t - v )  exp - - 1 / Z d z .  (1) 

0 

The heat flux qin(t) entering the sample is determined from the equation of heat balance of the heating 

element 

w a r  = C h AT + qin At,  (2) 

where At is a small interval of time; W is the heat flux released in the heating element, determined as the electric 

power supplied to the Nichrome wire divided by the heater area. In writing Eq. (2), it is assumed that all parts of 

the heating element have the same temperature. This assumption is based on the fact that the effective thermal 

conductivity of the heating element is two orders of magnitude larger than that of the investigated heat insulator. 

From (2) it is easy to derive the time dependence of the heat flux entering the sample 

d r  (3) 
qin (t) = W - C l a  dt " 

The temperature measured by thermocouple 4 (Fig. 1) can be used, in conformity with (3), to determine the heat 

flux entering the sample. 
To determine TPC of the sample, we formulate the extremum IHCP [6 ] as 

2 tm 
J (2 ,  C) = ~ f [ T O ,  C , x  i , t ) - f i ( t ) l  2 d t - ' m i n .  (4) 

i=1 0 2, C 

The uniqueness of its solution is shown in [7 ]. We will construct the solution using an iteration technique without 

calculating the derivatives of the goal functional [8 ]. The iteration formulas for determination of 2 and C at the 

(n+ l ) - th  iteration step have the form 

c n+~ = c n + a ~  (s)  2n+l =,~n + a~ , 

A value of the goal functional (4) at the (n + l)-th iteration step can be represented as 
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2 tm r n OT n OT 1 2 
J ( An+l, c n + l )  = E f L T (A n, C n, xi, t) + a~ O-ff + Ctc - ~  - fi (t) j dt .  (6) 

i=1 0 

To find the minimum of this functional in a~ and a~, we differentiate (6) with respect to these variables and equate 

the expressions obtained to zero. After some rearrangement we arrive at the following system 

where 

n n ; 
aAAl l  + c t c A 1 2 = B I ,  ct A21 + a ~ A 2 2 = B 2 ,  

All = X f ~ OA at; AI2 = X f OA OC 
i=1 0 i=1 0 

A21 = A l 2 ;  A22= ~-" f I OC at; 
i=1 0 

2 tm If i ] OT(xi ' t)  
= E f (0 - r c", 0 oA 

i=l 0 
dt ; 

(7) 

2 tm [fi ] OT(xi ' t)  
B E=  ~ f ( t ) - T ( ; t  n ,C n ,x  i,O OC dr. 

i=I 0 

The derivatives of the temperature with respect to the sought parameters OT(xi, t)/oA and  OT(xi, t)/OC are 

calculated analytical ly using formulas obtained by differentiating expression (1) with respect to A a n d  C, 

respectively. The expressions for these derivatives are cumbersome and, therefore, are not given. Having solved 
system (7), we obtain a~ and a~, needed to calculate A n+ 1 and C n+ l using formulas (5). 

To determine the heat flux entering the investigated sample, it is necessary to differentiate the recorded 

temperature of the heating element using formula (3). As is known, differentiation is an ill-defined operation, which 

leads to large errors in calculations of derivatives. To eliminate them, we adopted the following approach. Since the 

heating element possesses a considerably higher thermal conductivity than the investigated sample, we can use the 

analytical solution presented in [5 ] for the problem of the temperature distribution in a plate one of whose surfaces 

abuts a layer of an ideal inductor to which heat is supplied. This solution is an infinite descending series. If we 

restrict ourselves to its first term, the surface temperature can be represented in the form 

T (t) = a (1 - exp ( -  bt)). (8) 

The parameters a and b in (8) are determined by the magnitude of the input heat flux and the TPC and can be 

found from the following condition: 

t m 
J (a, b) = f [a (1 - exp ( -  bt)) - Tex p (t) ]2 dt ~ min.  (9) 

0 a,b 

We solved problem (9) using an iteration technique similar to the method used for solution of problem (4). To 

calculate qin(t) by formula (3), function (8) was differentiated with respect to time: 

aT (10) 
dt - ab exp ( -  bt) . 

Figure 2 shows dependences qin(t) obtained by numerical differentiation using the central difference approximation 

and calculated by (8)-(10). As is seen, approximation of the experimental temperature by curve (8) completely 

eliminates the incorrectness inherent in numerical differentiation. 
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The  calculation formulas for solving the IHCP contain various parameters  that  affect the e r ror  in T P C  

determinat ion.  Those  are the parameters  of the calculation algori thm and  the parameters  of the measur ing  device. 

The  former concern errors  of numerical  integration,  l inear approximation of the goal functional  by  express ion (6), 

and  calculation of the heat flux enter ing the specimen using algori thm (8)-(10) .  The  lat ter  concern  er rors  in the 

coordinates of placement  of the thermocouples,  in de terminat ion  of the heat  released by  the heat ing  e lement  and  

the heat  capacity of the heating element,  and in tempera ture  measurements .  Th e  accuracy of T P C  de te rmina t ion  

also depends on the measurement  time tin. 

The  influence of all these parameters  on the error  in T P C  determinat ion  was evaluated by  the me thod  of 

mathematical  modeling. For  this, using a f ini te-difference method and  an implicit conservative scheme [9 ], we 

solved the direct problem for a specimen with ;t = 0.03 W / ( m .  K) and C = 3-105 J / ( m  3. K),  which cor responds  to 

the T P C  of a highly efficient heat  insulator of the ATM type [2 ], for a heat  flux enter ing the specimen of 500 

W / m  2. This magni tude  of the heat  flux approaches that specified in the exper iment .  Th e  t empera tu re  was calculated 

at the points Xl = 0.97" 10 -3  m and x2 = 1.67.10 -3  m, which cor responded to the coordinates  of p lacement  of the 

thermocouples in the experiment .  The  tempera tures  obtained were used as f i ( t ) ,  i = 1, 2 to solve I H C P  (4); moreover  

qin(t) was not calculated by formula (3), we prescribed a constant  value of it equal to 500 W / m  x. 

In the first stage, we de termined  the influence of the integrat ion step At on the e r ror  in solving the IHCP.  

Use of the integrat ion steps of 1, 2.5, 5, and  10 sec showed that the T P C  obta ined by solving these I H C P s  differed 

from the exact values 2 = 0.03 W / ( m - K )  and C = 3 .10  s J / ( m  3. K) by  less than 0 .1%.  There fore ,  we can conclude 

that numerical  integration and linear approximation of the goal functional do not bring about  an error.  To  de te rmine  

the e r ror  in calculating qin(t) from the heat ing-element  temperature ,  we adopted the following procedure .  We 

calculated the tempera ture  in the construction shown in Fig. 1. In this calculation the heat  flux enter ing  layer  1 

was equal to 500 W / m  2. T h e  thicknesses of layers  1, 2, and 3 cor responded to those of the Nichrome,  mica, and  

steel of the heat ing element.  The  tempera ture  was de termined at point 4 as well as at points 5 and  6, which had 

the coordinates Xl = 0 .97 .10  -3  m and x2 = 1.67.10 -3 m, respectively. T h e  values obta ined  were used to model  the 

true (measured without error)  temperatures  at points 4, 5, and 6, which were specified as Texp(t) and  f i ( t ) ,  i = I ,  

2, respectively. Th en  IHCP (4) in which q in ( t )  w a s  de te rmined  by algori thm (8)-(10) was solved. Th e  differences 

of the thermophysical  characteristics obtained from the IHCP from the exact values were 6;t --- 1.0% and  6C = 3 .5%.  

T h e y  corresponded to the errors in calculations of t / in( t)  from the heat ing-e lement  t empera tu re  using algori thm 

(8)-(10) .  

Next,  we de termined  the influence of the measurement  time tm on an er ror  in T P C  determinat ions .  As in 

the case of qin(t) er ror  determinat ion,  we solved the direct problem and calculated the tempera tures  at points 4, 5, 

and 6. Then  these temperatures  were adopted as the initial data in solving the IH CP  for various tm values. The  

calculations revealed the existence of some critical tm. At t m < 4 0  sec i terat ion process (4)-(7)  did not converge. At 

t m > 40 sec the results were practically the same and the er ror  was de te rmined  by the e r ror  of hea t - f lux  calculation 

by algorithm (8)-(10) .  The  nonconvergence of i teration process (4)-(7) at tm <40  sec is apparen t ly  a t t r ibutable  to 

the fact that at a small tm the influence of the thermophysical  characterist ics of the specimen on the tempera tures  

at points 5 and 6 is insignificant. 

In practice, it is impossible to measure  the parameters  of the measuring device exactly.  To  elucidate  the 

influence of the er ror  in their  measurement  on the error  in T P C  determinat ion,  we solved the same direct  problem 

as in the investigation of the computat ional-algori thm parameters .  In so doing, the tempera tures  obta ined  served 

as the initial data for solving eight IHCPs,  which corresponded to the number  of parameters  of the  measur ing 

device. In each IHCP solution one of the parameters  was specified with an error,  which modeled  the er ror  in 

measurement  of this parameter  in the experiment .  This  led to an error  in T P C  determinat ion  (see Tab le  1). T h e  

error  values for the parameters  corresponded to the estimates of the maximum errors  with which the parameters  

of the measur ing device were specified. The  comparatively large er ror  in the coordinates  of p lacement  of the 

thermocouples was at tr ibutable to the fact that the thermojunctions were nonuniformly imbedded  in the specimens 

of the investigated material between which the thermocouple was placed. The  multiplicative er ror  in t empera tu re  

measurements  (lines 6, 7, and 8 in the table) was caused by drift  of the measuring channels .  
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TABLE 1. Influence of the Parameters  of the Measuring Device on the Accuracy of T P C  Measurement  

Line No. 

6 

7 

8 

Parameters  

name 

Coordinate  of thermocouple 5 

Coordinate  of thermocouple 6 

Heat  output  in the heat ing element  

Heat  capacity of the heat ing element  

Additive random noise of the 

temperatures  at points 4, 5, and 6 

Multiplicative er ror  of the 
tempera ture  at point 4 

Th e  same 

The  same 

error  

Axl -- 0.1- 10 -3  m 

Ax2 = 0 .1 .10  -3  m 

6W=5% 

6 C = 5 %  

A T  = 0.5 K 

KT = 2 .5% 

KT = 2 .5% 

K T = 2 . 5 %  

Relative er ror  in 2 and  C 
determinat ion,  respectively,  

% 

11.8; 3.0 

11.9; 7.9 

6.6; 5.7 

10.5; 10.5 

0.01; 0.01 

5.4; 5.6 

12.1; 2.9 

8.8; 5.4 

To check the feasibility of using the suggested approach to finding the e r ror  in T P C  de te rmina t ion ,  we 

compared  the scat ter  of the results of repea ted  measurements  of the same sample without disassembling the 

measuring device and the scatter  obtained in mathematical  modeling. We made  six runs of measurement s  of the  

thermophysical  characteristics of foam polyure thane  heat- insulat ing material .  The  results were averaged and  root-  

mean-square  deviations were calculated: 

2 = 0.066 ___ 4.5% (S ) ,  W / ( m . K )  ; C = 5.5.105 --- 5 .5% ( S ) ,  J / ( m 3 . K ) .  (11) 

Since the cell with the sample was not disassembled,  this scatter was due to the scat ter  in the values of the heat  

released in the heat ing element,  drift  of the measuring channels determining the tempera tures  at points 4, 5, and  

6, and the accuracy of qm(t) calculation. The  root -mean-square  deviation caused by these factors can be calculated 

as 

1 5 
S 2 = ~ • 1 0 0 % .  (12) 

In (12), X corresponds to the mean value obtained from six measurements  and given in (11). Th e  absolute max imum 

error  in thermal-conduct ivi ty  determinat ion A2 i was determined from its relative value given in Table  1 and  the 

mean value 2 = 0.066 W / ( m - K ) .  The  threefold decrease in A2 i in (12) is needed  to pass from the absolute er ror ,  

the value of which can be equated to 3S, to IS. The  root -mean-square  deviation obta ined using (12) was +_5.7% 

for 2 and ± 3 . 7 %  for C. A comparison of these values with the data obta ined on the measuring device shows the i r  

satisfactory agreement .  

The  total er ror  in the T P C  measurements  for foam polyure thane  was de te rmined  in a similar manner ,  on ly  

with regard for all the parameters  given in Table  1. The  measurement  errors  obta ined were as follows: 

;t = 0.066 _ 26% (S ) ,  W / ( m - K )  ; C = 5.5" 105 - 17% ( S ) ,  d / ( m 3 . K ) .  (13) 

A comparison of (13) and (11) reveals that the measurement  error  is severalfold grea ter  than the scat ter  in the 

results of repeated measurements  obtained for the same sample without disassembling the measur ing cell. 

An analysis of the accuracy of the IHCP solution is usually performed by imposing addit ive r andom noise 

on the initial temperatures  [7, 8 ]. The  er ror  of this noise, as seen from Table  1 (lines 5-8) ,  is more than two orders  

of magni tude smaller  than the muttiplicative er ror  in the temperature  measurements .  The re fo re  we can conc lude  

that it is insufficient to use only additive noise to analyze the accuracy of the IHCP solution. 
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Thus, the investigation of the influence of the parameters of both the computational algorithm and the 
measuring cell on the accuracy of TPC determination for highly efficient heat insulators has demonstrated that the 

use of mathematical modeling to solve this problem makes it possible to avoid repeated measurements on the same 

material at different parameters of the measuring cell. The scatter in the measurement results obtained without 
disassembling the measurement cell is severalfold smaller than the measurement error. Additive random noise 

imposed on the measured temperatures affects the measurement error only slightly as compared to the other 
parameters of the problem. The suggested approach can be used to evaluate the accuracy of other measurements. 

N O T A T I O N  

T, temperature; x, t, space and time coordinates; X, thermal diffusivity; ,~, thermal conductivity; xi, i = 1, 

2, coordinates of placement of thermocouples 5 and 6 inside the sample; Ch, heat capacity of the heating element; 

At, time step; tin, measurement time; C, heat capacity; fi(t), temperature measured at points 5 and 6; Tex p, 
measured temperature of the heating element; A, absolute error; 6, relative error; S, estimate of the relative root- 

mean-square deviation expressed in percent of the mean value; KT, relative multiplicative temperature error; n, 
iteration number. 
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